1 Additional Proof regarding Exercise 3.26 (a)

Proof:
\[
\sum_{i=1}^{k} \lambda_i(X) = \sup \{ tr(V^T X V) | V \in R^{n \times k}, V^T V = I \}
\]
where \(X \in S^n \) and
\[
\lambda_1(X) \geq \lambda_2(X) \geq \ldots \geq \lambda_n(X)
\]

Why is the variational characterization given in Boyd, Exercise 3.26 (a) correct?

Proof. First we show that such a solution for the supremum exists and then that it is indeed the maximum.

From the decomposition for symmetric matrices introduced in the first tutorial (and available in full detail on www.socher.org), we know that any symmetric matrix \(X \) can be rewritten as:
\[
\Lambda = V^T X V
\]
where \(\Lambda \) is the diagonal matrix with the eigenvalues on the diagonal. Hence, if we only align the \(k \) eigenvectors in \(V \) corresponding to the \(k \) largest eigenvalues, we get exactly a \(k \times k \) diagonal matrix with the \(k \) largest eigenvalues. Taking the trace of this matrix yields the given sum on the left side of equation 1.

Now the question arises, why the sum of the \(k \) largest eigenvalues corresponds to the supremum given in the right side of equation 1. Formally, is this correct:
\[
\{ tr(V^T X V) | V \in R^{n \times k}, V^T V = I \} \leq \sum_{i=1}^{k} \lambda_i(X)
\]

Let us take an arbitrary, rectangle, orthogonal matrix \(W \in R^{n \times k} \). We can represent this matrix \(W \) as columns of \(V \), since \(V \) spans the entire space in \(R^n \). Hence, there exists a \(Y \) such that
\[
W = V Y
\]
so that
\[
tr(W^T X W) = tr(Y^T V^T X V Y)
\]
\[
= tr(Y^T \Lambda Y)
\]
\[
= \sum_{i=1}^{n} \lambda_i y_i^T y_i
\]
Now, we can assume that \(Y \) is of rank \(k \) and its vectors are orthonormal and therefore
\[
\sum_{i=1}^{k} y_i^T y_i = k
\]
Another way to see this is: \(Y^T Y = Y^T V^T V Y = W^T W = I \in R^{k \times k} \) Using equation 2, we see:
\[
\sum_{i=1}^{n} \lambda_i y_i^T y_i \leq \sum_{i=1}^{k} \lambda_i
\]
\[
\square
\]