Zero Shot Learning Through Cross-Modal Transfer

Abstract

This work introduces a model that can recognize objects in images even if no training data is available for the object class. The only necessary knowledge about unseen visual categories comes from unsupervised text corpora. Unlike previous zero-shot learning models, which can only differentiate between unseen classes, our model can operate on a mixture of seen and unseen classes, simultaneously obtaining state of the art performance on classes with thousands of training images and reasonable performance on unseen classes. This is achieved by seeing the distributions of words in texts as a semantic space for understanding what objects look like. Our deep learning model does not require any manually defined semantic or visual features for either words or images. Images are mapped to be close to semantic word vectors corresponding to their classes, and the resulting image embeddings can be used to distinguish whether an image is of a seen or unseen class. We then use novelty detection methods to differentiate unseen classes from seen classes. We demonstrate two novelty detection strategies; the first gives high accuracy on unseen classes, while the second is conservative in its prediction of novelty and keeps the seen classes’ accuracy high.

Code

Bibtex